Dyski twarde oraz Dyski SSD

MENU
- Strona Główna
- Historia dysków HDD
- Budowa HDD
- Dysk RAM
- Strategie szeregowania zadań
- Sposób adresowania danych
- Producencni dysków
- Dysk twardy 5,25
- Historia Dysków SSD
- Działanie dysków SSD
- Interfejs dysków SSD
- Nazwa dysków SSD
- Źródła
Działanie:

Zasada działania pamięci w urządzeniu półprzewodnikowym jest podobna do stosowanej w pamięciach flash.

Podstawową zaletą SSD jest brak ruchomych części. Dodatkowo napędy te charakteryzują się zdecydowanie krótszym czasem dostępu do danych (kilkadziesiąt razy), cichszą pracą oraz o wiele większą odpornością na uszkodzenia mechaniczne (powodowane na przykład wstrząsami w czasie pracy lub upadkiem z wysokości). Wraz ze zwiększaniem się liczby bitów na 1 komórkę pamięci flash maleje jednak pewność zapisu (wzrasta prawdopodobieństwo przekłamania pojedynczych bitów zapisanych danych).

Inną sprawą jest wykorzystanie pamięci półprzewodnikowych w komputerach przemysłowych, gdzie nie jest istotna duża pojemność, jak to ma miejsce w przypadku klasycznych dysków, lecz przede wszystkim pewność działania i odporność na wibracje. Pamięci półprzewodnikowe w zastosowaniach przemysłowych nie wymagają pojemności rzędu 50–100 GB, gdyż w praktyce wykorzystywane są pojemności rzędu 1–8 GB i to w zupełności wystarcza, by przy relatywnie niskich kosztach pamięć spełniała swoją rolę. Koszty nośników flash o niskich pojemnościach są porównywalne z dyskami twardymi o dużych pojemnościach, lecz przewaga w pewności działania, stabilności i czasie dostępu jest po stronie nośników półprzewodnikowych w wykonaniu przemysłowym (industrial-grade SSD). Dodatkowo markowe nośniki półprzewodnikowe cechują się zaawansowanymi technikami usprawniającymi pracę i podnoszącymi trwałość całej pamięci poprzez wysoce zaawansowane algorytmy rozpraszania danych po powierzchni dysku.

Istotną cechą jest także szeroki zakres temperatur pracy, których magnetyczne dyski twarde nie były w stanie znieść przez wiele lat. Dyski półprzewodnikowe mogą być przystosowane do stałej pracy w zakresie temperatur pracy od -40 °C do +85 °C – jednak dotyczy to wyłącznie dysków opartych na pamięci NAND flash typu SLC (bariera technologiczna nie pozwala tańszym dyskom SSD MLC pracować w temperaturach niższych od -25 °C, gdyż wówczas szybko „gubią” dane). Odporność na długotrwałe działanie wysokiej temperatury jest bardzo istotną cechą tych nośników, gdyż wersje przemysłowe często znajdują się na halach, w skrzynkach na zewnątrz budynków i w pobliżu maszyn wytwarzających spore ilości ciepła.

Wprowadzenie pamięci półprzewodnikowych do masowej produkcji będzie wiązało się z obniżeniem ich ceny. Bezpośrednio ma to związek z rozwojem technologii Multi Level Cell (MLC) stanowiącej podstawę dla rozwoju konstrukcji SSD.

Powrót na stronę główną.

Bartosz Anhalt 3Ti